Morphisms and associated congruences

Lila Kari and Gabriel Thierrin

Abstract

To every morphism of X^{*} a congruence f_{R} on X^{*}, called kernel congruence, and defined by $u f_{R} v$ iff $f(u)=f(v)$ can be associated. We characterize morphisms having a commutative kernel congruence and, introducing the notion of the index of a morphism, we give a classification of the morphisms of X^{*}. Moreover, a congruence with special properties, called $h p$-congruence is considered; every kernel congruence is an $h p$-congruence, but the converse does not hold.

1 Introduction and basic notions

Let X^{*} be the free monoid generated by the finite alphabet $X, \operatorname{card}(X) \geq 2$, let 1 be the identity of X^{*} and let $X^{+}=X^{*} \backslash\{1\}$. Every element of X^{*} is called a word and every subset $L \subseteq X^{*}$ is called a language over X. The length of a word $u \in X^{*}$, i.e., the number of letters of u, is denoted by $|u|$. A mapping $\alpha: X^{*} \rightarrow X^{*}$ is called a morphism of X^{*} if $\alpha(u v)=\alpha(u) \alpha(v)$ for all $u, v \in X^{*}$. A morphism α is completely determined by the knowledge of the restriction of α to the alphabet X. If $f\left(X^{*}\right)=\{1\}$, then the morphism f is said to be trivial.

Morphisms play a significant role and have been extensively studied in formal languages. For example, closure properties of various classes of languages under morphisms and interdependencies between morphisms and other language operations have been thoroughly investigated by the theory of AFL (Abstract Families of Languages). On the other hand, the biologically motivated Lindenmayersystem theory is based on morphisms: the synchronous development of cells in an organism can be modelled by morphisms (developing rules) which are iteratedly applied to a string of letters (cells).

In this paper we focus on the interdependencies between morphisms, congruences, partial orders and codes.

In the end of this section, a congruence relation induced by a morphism f, called kernel congruence is defined. Section 2 focuses on morphisms preserving orders. Necessary and sufficient conditions under which inverse morphisms

[^0]preserve orders are obtained. In Section 3, after recalling a characterization of the classes of a kernel congruence using hypercodes and shuffle product ([3]), we introduce the notion of the index of a morphism. This index is bounded by the cardinality n of the alphabet. For every $k \leq n$, the set $M_{k}(x)$ of morphisms of index k is nonempty and the family $\left\{M_{k}(x) \mid 0 \leq k \leq n\right\}$ forms a strict hierarchy.

Section 4 introduces the notion of an hp-congruence, which is a congruence having the properties that one of its classes equals Y^{*}, for some $Y \subseteq X$ and the other classes are shuffle products between certain hypercodes and Y^{*}. While, in view of the previous results, it is straightforward that every kernel congruence is an hp-congruence, there are hp-congruences over X^{*} which are not kernel congruences for any morphism f. An example illustrating this situation is given in the end of Section 4.

We end this section by stating some basic definitions and well-known facts. For every morphism f of X^{*}, the relation f_{R} defined on X^{*} by $u f_{R} v \Leftrightarrow f(u)=$ $f(v)$ is an equivalence relation called the kernel equivalence of f (see, for example [2]). Since f_{R} is compatible, it is a congruence of X^{*}. The congruence f_{R} will be called the kernel congruence associated with f and the classes of f_{R} will be called f-classes. The kernel congruence is also known as nuclear congruence (see, for example, [1]). Remark that f_{R} is the identity if and only if f is injective. When there is no possibility of confusion, we will write $u \equiv v(f)$ instead of $u \equiv v\left(f_{R}\right)$.

A congruence ρ of X^{*} is said to be cancellative iff xuy $\equiv x v y(\rho)$ implies $u \equiv v(\rho)$. It is easy to see that the congruence ρ is cancellative if and only if the quotient monoid X^{*} / ρ is cancellative.

If f is a morphism of X^{*}, we denote by $\operatorname{KER}(f)$ the language defined by:

$$
\operatorname{KER}(f)=\left\{u \in X^{*} \mid f(u)=1\right\}
$$

If f is a morphism of X^{*}, then: (i) the quotient monoid X^{*} / f_{R} is isomorphic to the submonoid $f\left(X^{*}\right)$ of X^{*}, the congruence f_{R} is cancellative and, (ii) there exists a subalphabet (possibly empty) $Y \subseteq X$ such that $\operatorname{KER}(f)=Y^{*}$.

2 Morphisms and partial orders

A morphism f of X^{*} is called 1-free if $f(u)=1$ implies $u=1$, i.e. f is nonerasing. Such morphisms have been thoroughly studied in relation with propagating DOL-systems, used in developmental biology (see for example [5]). It is easy to see that the composition of 1-free morphisms is also a 1-free morphism.

We recall now the definitions of several partial orders on X^{*} that will be considered in the following (see for example [8]). Let $u, v \in X^{*}$. Then:
(1) Prefix order: $u \leq_{p} v$ iff $v=u x$ for some $x \in X^{*}$.
(2) Suffix order: $u \leq_{s} v$ iff $v=x u$ for some $x \in X^{*}$.
(3) Infix order: $u \leq_{i} v$ iff $v=x u y$ for some $x, y \in X^{*}$.
(4) Embedding order \leq_{e} :
$u \leq_{e} v \Leftrightarrow u=u_{1} u_{2} \cdots u_{n}, \quad v=x_{0} u_{1} x_{1} u_{2} x_{2} \cdots u_{n} x_{n}$, for some $u_{i}, x_{i} \in X^{*}$.
The prefix (suffix) order is left (right) compatible and the embedding order is compatible.

Let f be a morphism of X^{*} and \leq be a partial order on X^{*}. The morphism f is said to preserve the order \leq iff $u \leq v$ implies $f(u) \leq f(v)$.

It is known that every morphism f of X^{*} preserves the prefix, suffix, infix and embedding order.

If f is a morphism of X^{*} and \leq a partial order on X^{*}, then f is said to stricly preserve the partial order \leq if $u<v$ implies $f(u)<f(v)$.

Proposition 2.1 Let f be a morphism of X^{*}. The following properties are equivalent: (1) f is 1-free; (2) f strictly preserves the embedding order; (3) f strictly preserves the infix order; (4) f strictly preserves the prefix order; (5) f strictly preserves the suffix order.

Proof. (1) \Rightarrow (2). The relation $u<_{e} v$ implies $|u|<|v|$ hence $|f(u)|<_{e}|f(v)|$ since f does not erase letters.
$(2) \Rightarrow(1)$. For every $u \in X^{+}, 1<_{e} u$ implies $f(1)<_{e} f(u)$, hence f is 1-free.
In a similar way it can be shown that (1) is equivalent to (3), (4), (5).
If \leq is an order relation on X^{*} then a language L is called \leq-convex if $u \leq x \leq v, u, v \in L$ implies $x \in L$ (see, for example [6]).

If $X=\{a, b\}, f(a)=1$ and $f(b)=a$, then $f\left(X^{*}\right)=a^{*}$, a convex language for all the orders $\leq_{p}, \leq_{s}, \leq_{i}$ and \leq_{e}.

If $X=\{a\}$, then the language $C=\left\{a^{2}, a^{3}\right\}$ is \leq_{e}-convex. However the injective 1-free morphism $f(a)=a^{2}$ does not map C onto a \leq_{e}-convex language. Indeed, $f\left(a^{2}\right)=a^{4} \leq_{e} a^{5} \leq_{e} a^{6}=f\left(a^{3}\right)$ but there is no word u such that $f(u)=a^{5}$.

If f is a morphism of X^{*}, then $f(u) \leq_{e} f(v)$ does not in general imply $u \leq_{e} v$. For example, let $X=\{a, b\}, f(a)=a b$ and $f(b)=a b a b$. Then $f(a)=a b \leq_{e} a b a b=f(b)$ but $a \not Z_{e} b$. This example shows that the same assertion holds also for the prefix, suffix and infix orders.

The following result gives necessary and sufficient conditions under which such examples cannot arise. Recall that a code is a nonempty set $A \subseteq X^{+}$ with the property: $x_{1} x_{1} \ldots x_{n}=y_{1} y_{2} \ldots y_{m}$ and $x_{i}, y_{j} \in L$ for all i and j imply $n=m$ and $y_{i}=y_{i}$ for all i. A nonempty set $L \subseteq X^{+}$is a prefix code if $u \leq_{p} v$, $u, v \in L$ implies $u=v$.

Proposition 2.2 Let f be a morphism of X^{*}. The following properties are equivalent:
(i) $f(u) \leq_{p} f(v)$ implies $u \leq_{p} v$;
(ii) f is injective and $f(X)$ is a prefix code;
(iii) $\operatorname{card}(f(X))=\operatorname{card}(X)$ and $f(X)$ is a prefix code.

Proof. The equivalence (ii) \Leftrightarrow (iii) follows as, by a result of [8], a morphism f is injective iff $f(X)$ is a code and $\operatorname{card}(f(X))=\operatorname{card}(X)$.

Let us show that $(i) \Rightarrow(i i)$. The morphism f is 1 -free. Indeed, let $a \neq$ $b, a, b \in X$ and suppose $f(a)=1$. Then $f(a) \leq_{p} f(b)$ hence $a \leq_{p} b-\mathrm{a}$ contradiction.

The morphism f is injective. Indeed $f(u)=f(v)$ implies $u \leq_{p} v$ and $v \leq_{p} u$, which means $u=v$. If we consider two elements $f(a), f(b) \in f(X), a, b \in X$, with $f(a) \leq_{p} f(b)$, from (i) we deduce that $a \leq_{p} b$, which implies $a=b$. Consequently, $f(X)$ is a prefix code.

For the implication (ii) $\Rightarrow(i)$, consider $f(u) \leq_{p} f(v)$. If $f(u)=f(v)$ then, as f is injective, we have that $u=v$.

Assume now that $f(u)<_{p} f(v)$ and assume by absurd that u is not a prefix of v. Then one of the next cases holds:

- $v<_{p} u$, that is $u=v u^{\prime}, u^{\prime} \neq 1$. Then we have $f(u)=f(v) f\left(u^{\prime}\right)$. As f is 1-free this implies $f(v)$ is a proper prefix of $f(u)$ - a contradiction.
- $u=u_{1} a u_{2}, v=u_{1} b v_{2}, u_{1}, u_{2}, v_{2} \in X^{*}, a, b \in X, a \neq b$. Then, $f(u)=$ $f\left(u_{1}\right) f(a) f\left(u_{2}\right)$ and $f(v)=f\left(u_{1}\right) f(b) f\left(v_{2}\right)$. As $f(X)$ is a prefix code, $f(a) \nless_{p}$ $f(b)$ and $f(b) \not_{p} f(a)$, which implies that $f(u)$ is not a prefix of $f(v)$ - a contradiction.

Both cases led to contradictions, therefore our initial assumption that u is not a prefix of v was false.

By symmetry, an analogous result can be obtained for suffix order, by replacing the prefix order with suffix order and the prefix code with suffix code. However, a similar result does not hold for infix order, as shown by the following example.

Example. Consider the injective morphism of $\{a, b, c\}^{*}$ defined by $f(a)=$ $b a b, f(b)=b a a, f(c)=a a b$. Then $f(\{a, b, c\})$ is an infix code but we can find $b a a=f(b) \leq_{i} f(a c)=b a b a a b$ with $b \not Z_{i} a c$.

3 Morphisms and kernel congruences

In this section we recall a result of [3], showing that the classes of a kernel congruence can be described by using a special class of codes, the hypercodes. Morphisms having a commutative kernel congruence are characterized and, introducing the notion of index of a morphism, we give a classification of the morphisms of X^{*}.

A hypercode (see [7], [8]) is a nonempty set $H \subseteq X^{+}$that contains no pair of comparable words relatively to the embedding order \leq_{e}, i.e. $u \leq_{e} v, u, v \in H$, implies $u=v$. Every hypercode over a finite alphabet is finite.

Proposition 3.1 ([3]) Let f be a morphism of X^{*}, f_{R} be the corresponding kernel congruence and let $Y \subseteq X$ be the subalphabet of X such that $Y^{*}=$ $K E R(f)$. Then:
(i) For every class L of f_{R}, there exists a hypercode H such that $L=H \diamond Y^{*}$ where \diamond denotes the shuffle product. Furthermore L is a regular language.
(ii) The morphism f of X^{*} is 1-free iff every class $L \neq\{1\}$ of f_{R} is a hypercode.

As shown in ([3]), the congruence f_{R} is syntactic, i.e. there exists a language T such that $f_{R}=P_{T}$ where P_{T} is the syntactic congruence of T. (Recall that if $L \subseteq X^{*}$ is a language over X, then the syntactic congruence P_{L} of L is defined by: $u \equiv v\left(P_{L}\right)$ iff, for all x and $y,(x u y \in L \Leftrightarrow x v y \in L)$.)

If f is a 1 -free morphism, the classes $\neq\{1\}$ of the congruence f_{R} are hypercodes and therefore finite sets. The quotient monoid X^{*} / f_{R} is hence infinite. Furthermore the monoid X^{+}is a disjoint union of hypercodes H_{i}, i.e. $X^{+}=\cup_{i \geq 1} H_{i}$ and for each i and j there is some k for which $H_{i} H_{j} \subseteq H_{k}$.

Every injective morphism f is a 1 -free morphism and every class $\neq\{1\}$ is a hypercode containing only one word. If $X=\{a, b\}$ and $f(a)=a=f(b)$, then f is a 1 -free morphism and the classes of f_{R} are $\{1\}$ and the hypercodes $X^{n}, n \geq 0$.

A congruence ρ is said to be commutative if the quotient monoid X^{*} / ρ is commutative. If f is a morphism, then its kernel congruence is commutative if and only if $f\left(X^{*}\right)$ is a commutative submonoid of X^{*}. The commutativity of the congruence f_{R} implies that all the classes of f_{R} are commutative languages. In particular, if f is 1 -free then the classes $\neq\{1\}$ of f_{R} are commutative hypercodes.

For example, if $X=\{a, b\}$ and $f(a)=a=f(b)$, then the classes $\neq\{1\}$ of f_{R} are the commutative hypercodes $\left\{X^{n} \mid n \geq 1\right\}$.

The next proposition gives a complete description of all the possible 1-free morphisms f having a commutative congruence f_{R}.

Proposition 3.2 Let $X=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and let f be a 1-free morphism of X^{*}. Then the congruence f_{R} of f is commutative $\Leftrightarrow f\left(a_{i}\right)=p^{m_{i}}$ where $i=$ $1,2, \cdots, n, p$ is a primitive word and each m_{i} is a positive integer.

Proof. (\Rightarrow) Since f_{R} is commutative, $a_{i} a_{j}$ and $a_{j} a_{i}, i \neq j$, are in the same class. Hence $f\left(a_{i}\right) f\left(a_{j}\right)=f\left(a_{j}\right) f\left(a_{i}\right)$. Since $f\left(a_{i}\right) \neq 1, f\left(a_{j}\right) \neq 1$ we have $f\left(a_{i}\right)=p^{m_{i}}$ and $f\left(a_{j}\right)=p^{m_{j}}$ for some primitive word p and positive integers m_{i}, m_{j}. As the choice of the letters a_{i}, a_{j} was arbitrary, we will get the same primitive word p by using different letters. Hence $f\left(a_{i}\right)=p^{m_{i}}$ for $i=1,2, \cdots, n$.
(\Leftarrow) Immediate, because $f\left(a_{i}\right) f\left(a_{j}\right)=f\left(a_{j}\right) f\left(a_{i}\right)$ for any i, j.
If f, g are morphisms of X^{*}, then it is easy to see that $g_{R} \subseteq(f g)_{R}$. In particular, $f_{R} \subseteq f_{R}^{2}$ and hence we have the following chain:

$$
f_{R} \subseteq f_{R}^{2} \subseteq \cdots \subseteq f_{R}^{k} \subseteq \cdots
$$

If, for some $n, f_{R}^{n}=f_{R}^{n+1}$, then $f_{R}^{n}=f_{R}^{n+i}$ for all $i \geq 0$. The next result shows that the above chain is always finite.

Proposition 3.3 ([4]) Let f be a morphism of X^{*} with $|X|=n$. Then:

$$
f_{R}^{n}=f_{R}^{n+1}
$$

It follows that for any morphism f of X^{*} with $|X|=n$, the equality $f^{r}(u)=$ $f^{r}(v), r>n$, implies $f^{n}(u)=f^{n}(v)$. Let k be the least non-negative integer such that $f_{R}^{k}=f_{R}^{k+1}$ and call this integer the index of f. The index of a morphism is always less or equal to the cardinality of the alphabet X and, if $g=f^{k}$, then $g^{2}(u)=g^{2}(v)$ implies $g(u)=g(v)$.

A morphism f is of index 0 if and only if f is injective. If $X=\{a\}$, then the morphisms of index 0 are the ones that map the letter a into any positive power of a, while the morphism mapping a to 1 is the only morphism of index 1.

If $X=\{a, b\}$, the trivial morphism (which maps everything into 1) is of index 1 and the morphism $f: f(a)=1, f(b)=a$ is of index 2 . Since $|X|=2$, then all the morphisms are of index $k \leq 2$.

Proposition 3.4 Let $|X|=n$, let $M(X)$ be the set of all morphisms and let $M_{k}(X), 0 \leq k \leq n$, be the set of all morphisms of index $i \leq k$ of X^{*}. Then:
(i) $M_{k}(X) \neq \emptyset, 0 \leq k \leq n$, and we have the strict hierarchy:

$$
M_{0}(X) \subset M_{1}(X) \subset \cdots \subset M_{k}(X) \subset \cdots \subset M_{n}(X)=M(X)
$$

(ii) If $f \in M_{k}(X)$, the morphism f is an injective morphism of the submonoid $f^{k}\left(X^{*}\right)$ and f induces an injective morphism of the quotient monoid X^{*} / f_{R}^{k}.

Proof. (i) Let $X=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$. It is clear that $M_{n}(X)=M(X)$ and that $M_{0}(X)$ is the set of the injective morphisms and hence non empty. Furthermore $M_{0}(X) \subset M_{1}(X)$. Let k with $1<k<n$ and define the morphism f_{k} by:

$$
\begin{gathered}
f_{k}\left(a_{1}\right)=a_{2}, f_{k}\left(a_{2}\right)=a_{3}, \cdots, f_{k}\left(a_{k-1}\right)=a_{k} \\
f_{k}\left(a_{k}\right)=f_{k}\left(a_{k+1}\right)=\cdots=f_{k}\left(a_{n}\right)=1
\end{gathered}
$$

It is easy to see that the index of f_{k} is k. Because the index is by definition the least non-negative integer k such that $f_{R}^{k}=f_{R}^{k+1}$, a morphism of index k cannot also be of index $k-1$. This shows that $M_{k-1}(X)$ is strictly contained in $M_{k}(X)$.
(ii) Suppose that $f(u)=f(v), u, v \in f^{k}\left(X^{*}\right)$. Then $u=f^{k}(r), v=f^{k}(s)$, $r, s \in X^{*}$, and $f^{k+1}(r)=f^{k+1}(s)$. Since the index of f is k, then $u=f^{k}(r)=$ $f^{k}(s)=v$ and f is injective on $f^{k}\left(X^{*}\right)$.

Let $S=X^{*} / f_{R}^{k}$ and let $[\mathrm{u}]$ denote the class of u modulo f_{R}^{k}. Define the mapping $\phi: S \rightarrow S$ by $\phi([u])=[f(u)]$. It is easy to see that this mapping ϕ is well defined and that ϕ is a morphism of the monoid S. If $\phi([u])=\phi([v])$, then $f(u) \equiv f(v)\left(f_{R}^{k}\right), f^{k+1}(u)=f^{k+1}(v)$ and hence $f^{k}(u)=f^{k}(v)$. Therefore $u \equiv v\left(f_{R}^{k}\right),[u]=[v]$ and ϕ is injective.

4 Hp-congruences

We have seen how, given a morphism $f: X^{*} \longrightarrow X^{*}$, we can associate to it a congruence of X^{*}. This congruence has the properties that its classes are hypercodes or shuffle products of a free monoid with hypercodes (Proposition 3.1.) In this section we consider congruences having the above properties. As their classes are hypercodes or shuffle products of free monoids with hypercodes, such congruences will be called hypercode-congruences or shortly hp-congruences.

An $h p$-congruence of the monoid X^{*} is a congruence R of X^{*} satisfying the properties:
(i) There uniquely exists a subalphabet (possibly empty) $Y \subseteq X, Y \neq X$, such that Y^{*} is a class of R.
(ii) Every class $A \neq Y^{*}$ of R is of the form $A=H \diamond Y^{*}$ where H is a hypercode over $X \backslash Y$ and \diamond is the shuffle product.

A strict hp-congruence is an hp-congruence of X^{*} such that $Y=\emptyset$. This is equivalent to the fact that $Y^{*}=\{1\}$ and that all the classes $\neq\{1\}$ of the hp-congruence are hypercodes.

Examples of strict hp-congruences.
(1) It immediately follows that if f is an 1-free morphism, the kernel congruence f_{R} is a strict hp-congruence of X^{*}.

The set of all the singletons is a strict hp-congruence corresponding to the injective morphisms.
(2) The congruence π defined by $u \equiv v(\pi)$ iff $p(u)=p(v)$, where $p(u)$ is the set of all the permutations of the letters of the word u, is a strict hp-congruence of X^{*}. The classes of π are $\{1\}$ and $\left\{p(u) \mid u \in X^{+}\right\}$.
(3) Let $X=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ and let α be the equivalence defined on X^{*} by $u \equiv b(\alpha)$ iff $|u|=|v|$ and $u=a_{i} x, v=a_{i} y$ with $a_{i} \in X$. It is immediate that α is a congruence. If H is a class $\neq\{1\}$, then all the words in H have the same length and hence H is a hypercode. Therefore α is a strict hp-congruence.
(4) Let $X=\{a, b\}$ and let R be a strict hp-congruence. Define the relation $\alpha(R)$ by $u \alpha(R) v$ iff $u \equiv v(R)$ and $u_{a}=v_{b}$ where u_{x} denotes the number of occurrences of the letter x in the word u. The relation $\alpha(R)$ is a congruence. Each class of $\alpha(R)$ is a subset of a class of R and hence either $\{1\}$ or a hypercode. Hence $\alpha(R)$ is a strict hp-congruence.

Let R_{1} and R_{2} be two strict hp-congruences of X^{*}. By $R_{1} \subseteq R_{2}$, we mean that $u \equiv v\left(R_{1}\right)$ implies $u \equiv v\left(R_{2}\right)$. This defines a partial order in the family of the strict hp-congruences of X^{*}.

Proposition 4.1 Every strict hp-congruence is contained in a maximal strict $h p$-congruence.

Proof. Let $R(X)$ be the family of strict hp-congruences of X^{*}, let $R \in R(X)$ and let $\left\{R_{i} \mid i \in I\right\}$ be a chain of strict hp-congruences such that $R \subseteq R_{i}$. Let
$T=\bigcup_{i \in I} R_{i}$, i.e. T is the congruence defined by $u \equiv v(T)$ iff there exists $i \in I$ such that $u \equiv v\left(R_{i}\right)$.
T is a congruence of X^{*}. Moreover, T is a strict hp-congruence containing R. Indeed, let $H \neq\{1\}$ be a class of R and, for every $i \in I$, let H_{i} be the class of R_{i} containing H. Then H and each H_{i} are hypercodes. Let $W=\cup_{i \in I} H_{i}$. W is a class of T. If $u, v \in W$, then $u, v \in H_{i}$ for some $i \in I$ and $u \leq_{e} v$ implies $u=v$. Hence W is a hypercode. Since $\{1\}$ is a class for each $R_{i},\{1\}$ is also a class of T. It follows then that T is a strict hp-congruence of X^{*} containing R.

Since the union of strict hp-congruences in a chain is also a strict hpcongruence, we can use the Zorn's Lemma. Therefore for every strict hpcongruence R of X^{*}, there exists a maximal strict hp-congruence containing R.

The strict hp-congruence $S=\{1\} \cup\left\{X^{n} \mid n \geq 1\right\}$ is a maximal strict hpcongruence because X^{n} is a maximal hypercode.

It is easy to see that every hypercode can be embedded in a maximal hypercode. We consider in the following 1-free morphisms f of X^{*} having one of the following properties:

- all the nontrivial classes of f_{R} are maximal hypercodes;
- at least one nontrivial class of f_{R} is a maximal hypercode.

For example, if $X=\{a, b\}$ and $f(a)=f(b)=a$, then the nontrivial classes are of the form $X^{n}, n>0$. It is clear that X^{n} is a maximal hypercode. The following proposition shows that if all the nontrivial classes of a kernel congruence are maximal hypercodes, then they are of the form $X^{n}, n \geq 1$.

Proposition 4.2 If the nontrivial classes of the hp-congruence f_{R} of a 1-free morphism f are maximal hypercodes, then each class is of the form $X^{n}, n \geq 0$.

Proof. Let $X=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ and let $H \in f_{R}, H \neq\{1\}$, be a maximal hypercode. This implies that for every $u \in X^{+}$there exists $h \in H$ such that either $u \leq_{e} h$ or $h \leq_{e} u$.

If $m=1$, then H is a singleton, hence $H=X^{n}$.
Suppose $m \geq 2$. Let $a_{1}=a, a_{2}=b$ and let A and B be the classes containing respectively a and b.

Suppose that $A \neq B$. Since $\{a\}$ and $\{b\}$ are not maximal hypercodes, A must contain a word u of the form $u=x b y$ with $x y \neq 1$. If not, since $b^{2} \notin A, A \cup\left\{b^{2}\right\}$ is a hypercode, in contradiction with the maximality of A. Similarly it can be shown that B must contain a word v of the form $v=r a t$ with $r t \neq 1$. From $f(a)=f(u)=f(x b y)=f(x) f(b) f(y), f(b)=f(v)=f($ rat $)=f(r) f(a) f(t)$ follows $f(a)=f(x) f(r) f(a) f(t) f(y)$. This implies $f(x)=f(r)=f(t)=f(y)=$ 1. Since $x y \neq 1$ and f is 1 -free, we have $f(x) f(y)=f(x y) \neq 1$, a contradiction.

Therefore $A=B, a, b \in A$ and consequently we have $X \subseteq A$. Since A is maximal, $A=X$. As the product of classes is contained in a class, X^{n} is contained in a class that is a maximal hypercode. This implies X^{n} is a class. Hence $f_{R}=\cup_{n \geq 0} X^{n}$.

In the following example, a 1-free morphism f is given such that at least one class of f_{R} is a maximal hypercode and at least one class is not a maximal hypercode.

Example. Let $X=\{a, b\}$ and let $f(a)=b^{2}$ and $f(b)=b$. Then $f(a)=f\left(b^{2}\right)$ which implies $a \equiv b^{2}\left(f_{R}\right)$. The hypercode $H=\left\{a, b^{2}\right\}$ is a maximal hypercode and a class of the hp-congruence f_{R}. However $\{b\}$ is also a class of f_{R}, but $\{b\}$ is not a maximal hypercode, because for example $b \in\left\{a^{2}, b\right\}$ which is a maximal hypercode.

If f is a nontrivial morphism of X^{*}, then the congruence f_{R} is an hpcongruence of X^{*}. Furthermore f_{R} is strict iff $\operatorname{KER}(f)=\{1\}$, that is, the subalphabet Y is empty.

Let R be an hp-congruence of X^{*}. We consider now the problem of associating to R a morphism f_{R} such that $R=f_{R}$. The next proposition shows that this is not always possible.

Proposition 4.3 There exists at least one hp-congruence for which there is no morphism f having this hp-congruence as its kernel congruence.

Proof. Let $X=\{a, b\}$ and consider the following strict hp-congruence R. For any $n \geq 1$, the language X^{n} is split into two parts $A_{n}=\left\{a^{n}\right\}$ and $B_{n}=$ $X^{n} \backslash\left\{a^{n}\right\}$. The hp-congruence R consists of the following classes:

$$
\{1\}, A_{n}, B_{n}, \quad n=1,2, \cdots
$$

R is an hp-congruence. Indeed, it is immediate that R is an equivalence relation. Let $x \in X^{+}$with $|x|=k$. One of the following two cases can occur.
Case 1. $x=a^{k}$. Then, $x A_{n}, A_{n} x \subseteq A_{n+k}$, and $x B_{n}, B_{n} x \subseteq B_{n+k}$.
Case 2. $x=r b s, r s \in X^{*}$. Then, $x A_{n}, A_{n} x, x B_{n}, B_{n} x \subseteq B_{n+k}$. This implies R is compatible and therefore a congruence. Since the classes of R not containing 1 consist of words of the same length, they are all hypercodes.

We have shown therefore that R is an hp-congruence.
Assume now, by reductio ad absurdum, that there exists a morphism f such that $R=f_{R}$.

Notice first that, if U is a class of R, then $u \in U$ implies that the set $p(u)$ of the words obtained from u by a permutation of the letters of u is contained in U. This implies in particular that $f(u v)=f(v u)$ for all $u, v \in X^{*}$.

Consequently, if $a, b \in X, f(a b)=f(b a)$, that is $f(a) f(b)=f(b) f(a)$. ¿From this we deduce (see for example [8]) $f(a)=p^{m}, f(b)=p^{q}$ where $m, q \geq 1$ and p is a primitive word. As $b^{2} \equiv a b(R)$, we have that $p^{q+q}=p^{m+q}$, that is $m=q$. We arrived at a contradiction as $m=q$ implies $f(a)=f(b)$ which further implies $a^{2} \equiv a b\left(f_{R}\right)$, but a^{2} and $a b$ belong to different classes of $R=f_{R}$.

Consequently our initial assumption was false, and there is no morphism f such that $R=f_{R}$.

Consider the relation π on X^{*} defined by $u \equiv v(\pi) \Leftrightarrow p(u)=p(v)$ where $p(u)$ is the set of the words obtained by permuting the letters of u. This is
a congruence of X^{*} whose classes are $\{1\}$ and the languages consisting of all the permutations of a given word. Hence every class $\neq\{1\}$ is a hypercode and the quotient monoid X^{*} / π is commutative. Therefore the classes of π form a commutative strict hp-congruence $P=\{1\} \cup\left\{p(u) \mid u \in X^{+}\right\}$.

References

[1] J.Berstel, D.Perrin, Theory of Codes, Academic Press, New York (1985).
[2] J.M.Howie, Automata and languages, Clarendon Press, Oxford (1991).
[3] M. Petrich and G. Thierrin, Congruences associated with DOL-schemes, Proc. Amer. Mat. Soc. 102(1988), 787-793.
[4] C.M. Reis, Periodic endomorphisms of a free monoid, Semigroup Forum (to appear).
[5] G.Rozenberg and A.Salomaa, The Mathematical Theory of L Systems, Academic Press, New York (1980).
[6] G. Thierrin, Convex languages, IRIA Symposium, Paris (1972) Automata, Languages and Programming, North-Holland.
[7] G. Thierrin, The syntactic monoid of a hypercode, Semigroup Forum 6(1973), 227-231.
[8] H.J. Shyr, Free monoids and languages, Lecture Notes, Institut of Applied Mathematics, National Chung-Hsing University, Taichung (1991).
[9] H.J. Shyr, Disjunctive languages on a free monoid, Information and Control 34(1977), 123-129.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO, N6A 5B7 CANADA

[^0]: ${ }^{1}$ Mathematics Subject Classification. Primary 20M35; Secondary 68Q45.
 ${ }^{2}$ Key words and phrases. Monoid, free, morphism, language, congruence, order, code.
 ${ }^{3}$ This research was supported by Grant OGP0007877 of the Natural Sciences and Engineering Research Council of Canada.

